Constants of motion, ladder operators and supersymmetry of the two-dimensional isotropic harmonic oscillator

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2002 J. Phys. A: Math. Gen. 352979
(http://iopscience.iop.org/0305-4470/35/12/318)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.106
The article was downloaded on 02/06/2010 at 09:59

Please note that terms and conditions apply.

Constants of motion, ladder operators and supersymmetry of the two-dimensional isotropic harmonic oscillator

R D Mota ${ }^{1}$, V D Granados ${ }^{2}$, A Queijeiro ${ }^{2}$ and J García ${ }^{2}$
${ }^{1}$ Unidad Profesional Interdisciplinaria de Ingeniería y Tecnologías Avanzadas, IPN Av. Instituto Politécnico Nacional 2580, Col. La Laguna Ticomán, Delegación Gustavo A Madero, 07340 México DF, Mexico
${ }^{2}$ Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Ed. 9, Unidad Profesional Adolfo López Mateos, 07738 México DF, Mexico
E-mail: mota@gina.esfm.ipn.mx and ravelo@esfm.ipn.mx (J Garcia)

Received 23 August 2001, in final form 23 January 2002
Published 15 March 2002
Online at stacks.iop.org/JPhysA/35/2979

Abstract

For the quantum two-dimensional isotropic harmonic oscillator we show that the Infeld-Hull radial operators, as well as those of the supersymmetric approach for the radial equation, are contained in the constants of motion of the problem.

PACS numbers: 03.65.-w, 02.30.Tb, 11.30.Pb

1. Introduction

For some quantum problems the relation between constants of motion, ladder operators and supercharges has been studied by several authors. For example, in their seminal work Infeld and Hull showed the connection between factorization operators and the orbital angular momentum [1]. The Infeld-Hull (IH) factorization can be derived from the ladder operators related to the angular momentum operators in the symmetric top, the electron-magnetic pole interaction and Weyl's spherical harmonics with spin [2]. Besides, the Laplace-Runge-Lenz vector (LRLV) has been related to the Infeld-Hull factorization method (IHFM) [2-4] and to the pair of isospectral Hamiltonians for the non-relativistic Kepler-Coulomb quantum problem [4-6]. Also, in [7] it is shown that the supersymmetry of the relativistic Kepler quantum problem is generated by the Johnson-Lippmann operator.

We can ask ourselves for other quantum problems where there is any connection between the constants of motion and their radial ladder operators. The purpose of this paper is to answer this question by treating the two-dimensional isotropic harmonic oscillator (2-DIHO) quantum problem. To do this we follow the approach developed in [4], the radial Schrödinger
equation factorized a lá IH , and the relationship between degeneracy, constants of motion and the $S U(2)$ symmetry group for the 2-DIHO.

In section 2, we find, from the classical observables of the problem, the quantum operators $S_{ \pm}$, which connect all the states with a given energy. We show how these quantum operators are related with the left and right circular annihilation operators. We apply them to any wavefunction of the function space spanned by the solutions of the Schrödinger equation. This procedure allows us to obtain the radial ladder operators for the reduced wavefunction $f_{n m}(\rho)$, acting on m, without reference to any factorization method. Next, by using the radial Schrödinger equation we show that these operators are equal to those we obtain by using the IHFM. So, we conclude that the IH radial operators of the problem are contained in the quantum operators $S_{ \pm}$.

In section 3, by means of simple arguments, we show how the ladder operators obtained in section 2 must generate the pair of isospectral Hamiltonians of the 2-DIHO. Finally, in section 4 , we give some concluding remarks.

2. The constants of motion $S_{ \pm}$, annihilation operators a_{d}, a_{g} and ladder operators for

 $f_{n m}(\rho)$, acting on mIt is well known that the constants of motion of the classical 2-DIHO (in addition to the angular momentum L_{z}) are given by the symmetric tensor of rank 2 [8]:

$$
\begin{equation*}
A_{i j}=\frac{1}{2 \mu}\left(P_{i} P_{j}+\mu^{2} \omega^{2} x_{i} x_{j}\right) \tag{1}
\end{equation*}
$$

with $\mu(\omega)$ the mass (frequency), \boldsymbol{P} the linear momentum of the oscillator and $i, j=x, y$. The quantum version of this tensor follows immediately, since it turns out to be self-adjoint. These operators and the angular momentum L_{z} are used to define the new constants of motion:

$$
\begin{align*}
& S_{x} \equiv\left(A_{x y}+A_{y x}\right) / 2 \omega=\left(P_{x} P_{y}+\mu^{2} \omega^{2} x y\right) / 2 \mu \omega \tag{2}\\
& S_{y} \equiv\left(A_{y y}-A_{x x}\right) / 2 \omega=\left(P_{y}^{2}-P_{x}^{2}+\mu^{2} \omega^{2}\left(y^{2}-x^{2}\right)\right) / 4 \mu \omega \tag{3}\\
& S_{z} \equiv L_{z} / 2=\left(x P_{y}-y P_{x}\right) / 2 \tag{4}
\end{align*}
$$

Except for some small changes, these are those given in [9]. S_{x} is known as the correlation and is a peculiar feature of the 2-DIHO [10]. S_{y} is the energy difference of the one-dimensional harmonic oscillators in the x - and y-coordinates. They obey the $S U(2)$ or $S O(3)$ group Lie algebra:

$$
\begin{equation*}
\left[S_{i}, S_{j}\right]=\mathrm{i} \hbar \epsilon_{i j k} S_{k} \quad \text { for } \quad i, j, k=x, y, z \tag{5}
\end{equation*}
$$

These commutation relations leads to

$$
\begin{equation*}
\left[L_{z}, S_{ \pm}\right]= \pm 2 \hbar S_{ \pm} \tag{6}
\end{equation*}
$$

where $S_{ \pm}=S_{x} \pm \mathrm{i} S_{y}$.
The Hamiltonian of the 2-DIHO is

$$
\begin{equation*}
H=\frac{1}{2 \mu}\left(P_{x}^{2}+P_{y}^{2}+\mu^{2} \omega^{2}\left(x^{2}+y^{2}\right)\right) \tag{7}
\end{equation*}
$$

or, in polar coordinates,

$$
\begin{equation*}
H=-\frac{\hbar^{2}}{2 \mu}\left(\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho \frac{\partial}{\partial \rho}\right)+\frac{1}{\rho^{2}} \frac{\partial^{2}}{\partial \phi^{2}}\right)+V(\rho) \tag{8}
\end{equation*}
$$

where $V(\rho)=\mu \omega^{2} \rho^{2} / 2$. Because of $\left[A_{i j}, H\right]=\left[L_{z}, H\right]=0$, it is straightforward to show that $\left[H, S_{i}\right]=0$.

We know that the operators $\left\{H, L_{z}\right\}$ are a complete set of commuting observables in the state space $\xi_{x y}$ associated with the variables x and y [11]. Then by applying equation (6) to any eigensolution $\psi_{n m}$ of the eigenvalue equations

$$
\begin{equation*}
H \psi(\rho, \phi)=E \psi(\rho, \phi) \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
L_{z} \psi(\rho, \phi)=\hbar m \psi(\rho, \phi) \tag{10}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
L_{z} S_{ \pm} \psi_{n m}=S_{ \pm}\left(L_{z} \pm 2 \hbar\right) \psi_{n m}=\hbar(m \pm 2) S_{ \pm} \psi_{n m} \tag{11}
\end{equation*}
$$

Since this expresses the fact that $S_{ \pm} \psi_{n m}$ is also an eigenfunction of L_{z} with eigenvalues $m \pm 2$, then

$$
\begin{equation*}
S_{ \pm} \psi_{n m} \propto \psi_{n m \pm 2} \tag{12}
\end{equation*}
$$

i.e. $S_{+}\left(S_{-}\right)$increases (decreases) two units in m, leaving the principal quantum number n fixed, when it acts over the complete state $\psi_{n m}(\rho, \phi)$. Therefore, the degeneracy of the 2-DIHO can be described by using the operators $S_{ \pm}$.

Equation (12) suggests a connection between the operators $S_{ \pm}$and the left and right circular annihilation operators a_{d} and a_{g} defined as [11]

$$
\begin{align*}
& a_{d}=\frac{1}{\sqrt{2}}\left(a_{x}-\mathrm{i} a_{y}\right) \tag{13}\\
& a_{g}=\frac{1}{\sqrt{2}}\left(a_{x}+\mathrm{i} a_{y}\right) \tag{14}
\end{align*}
$$

where

$$
\begin{align*}
& a_{x}=\frac{1}{\sqrt{2}}\left(\beta x+\mathrm{i} P_{x} / \beta \hbar\right) \tag{15}\\
& a_{y}=\frac{1}{\sqrt{2}}\left(\beta y+\mathrm{i} P_{y} / \beta \hbar\right) \tag{16}
\end{align*}
$$

with $\beta=\sqrt{\mu \omega / \hbar}$. Since the action of the operators a_{d} and a_{g} on any 2-DIHO wavefunction $\psi_{n m}$ leads us to

$$
\begin{array}{ll}
a_{d} \psi_{n m}=\sqrt{\frac{1}{2}(n+m)} \psi_{n-1 m-1} & a_{d}^{\dagger} \psi_{n m}=\sqrt{\frac{1}{2}(n+m)+1} \psi_{n+1 m+1} \\
a_{g} \psi_{n m}=\sqrt{\frac{1}{2}(n-m)} \psi_{n-1 m+1} & a_{g}^{\dagger} \psi_{n m}=\sqrt{\frac{1}{2}(n-m)} \psi_{n+1 m-1} \tag{18}
\end{array}
$$

where the dagger implies Hermitian conjugate, we deduce that

$$
\begin{align*}
& a_{d}^{\dagger} a_{g} \psi_{n m}=\sqrt{n_{g}\left(n_{d}+1\right)} \psi_{n m+2} \tag{19}\\
& a_{g}^{\dagger} a_{d} \psi_{n m}=\sqrt{n_{d}\left(n_{g}+1\right)} \psi_{n m-2}
\end{align*}
$$

with $n_{d}=(n+m) / 2$ and $n_{g}=(n-m) / 2$.
Thus, from equations (12) and (19) we can say that $S_{+}\left(S_{-}\right)$is a multiple of $a_{d}^{\dagger} a_{g}\left(a_{g}^{\dagger} a_{d}\right)$. In fact, we easily verify that

$$
\begin{align*}
& S_{+}=-\mathrm{i} a_{d}^{\dagger} a_{g} \\
& S_{-}=+\mathrm{i} a_{g}^{\dagger} a_{d} . \tag{20}
\end{align*}
$$

On the other hand, for all two-dimensional central potentials $V(\rho), \psi_{n m}$ can be written as

$$
\begin{equation*}
\psi_{n m}=\mathrm{e}^{\mathrm{i} m \phi} R_{n m}(\rho) . \tag{21}
\end{equation*}
$$

Now, we want to show how the IH radial ladder operators for the reduced wavefunction

$$
\begin{equation*}
f_{n m}(\rho) \equiv \rho R_{n m}(\rho) \tag{22}
\end{equation*}
$$

acting on m, are contained in $S_{ \pm}$. By expressing the operators $S_{ \pm}$in polar coordinates we find

$$
\begin{equation*}
S_{ \pm}=\frac{-\hbar^{2}}{4 \mu \omega} \mathrm{e}^{ \pm 2 \phi}\left(\mp \mathrm{i}\left(\frac{\partial^{2}}{\partial \rho^{2}}-\frac{1}{\rho} \frac{\partial}{\partial \rho}-\frac{1}{\rho^{2}} \frac{\partial^{2}}{\partial \phi^{2}}-\frac{\mu^{2} \omega^{2}}{\hbar^{2}} \rho^{2}\right)-\frac{2}{\rho^{2}} \frac{\partial}{\partial \phi}+\frac{2}{\rho} \frac{\partial^{2}}{\partial \rho \partial \phi}\right) \tag{23}
\end{equation*}
$$

Applying them to any bound state of the form (21), we obtain
$S_{ \pm} \psi_{n m}= \pm \frac{\mathrm{i} \hbar^{2}}{4 \mu \omega} \mathrm{e}^{\mathrm{i}(m \pm 2) \phi}\left(\frac{\mathrm{d}^{2}}{\mathrm{~d} \rho^{2}}-\frac{1}{\rho}(\pm 2 m+1) \frac{\mathrm{d}}{\mathrm{d} \rho}+\frac{m^{2} \pm 2 m}{\rho^{2}}-\frac{\mu^{2} \omega^{2}}{\hbar^{2}} \rho^{2}\right) R_{n m}(\rho)$.
The second-order derivative in this equation can be transformed into one of first order by using the radial Schrödinger equation

$$
\begin{equation*}
\left(\frac{\mathrm{d}^{2}}{\mathrm{~d} \rho^{2}}+\frac{1}{\rho} \frac{\mathrm{~d}}{\mathrm{~d} \rho}-\frac{m^{2}}{\rho^{2}}-\beta^{4} \rho^{2}\right) R_{n m}(\rho)=-\beta^{2} \gamma R_{n m}(\rho) \tag{25}
\end{equation*}
$$

with $\gamma=2 E / \hbar \omega$. Then we obtain
$S_{ \pm} \psi_{n m}=-\frac{\mathrm{i} \hbar}{2 \beta^{2}}(m \pm 1) \mathrm{e}^{\mathrm{i}(m \pm 2) \phi}\left(\frac{1}{\rho} \frac{\mathrm{~d}}{\mathrm{~d} \rho} \mp \frac{m}{\rho^{2}} \pm \frac{\gamma}{2(m \pm 1)} \beta^{2}\right) R_{n m}(\rho)$
which is of first order. An important fact that will be used in section 3 is that these equations are not defined for $m=\mp 1$. Then, because of equations (12) and equation (26), the explicit first-order radial ladder operators, the step-up and step-down in m must be such that

$$
\begin{equation*}
\left(\frac{1}{\rho} \frac{\mathrm{~d}}{\mathrm{~d} \rho} \mp \frac{m}{\rho^{2}} \pm \frac{\gamma}{2(m \pm 1)} \beta^{2}\right) R_{n m}(\rho)=R_{n m \pm 2}(\rho) . \tag{27}
\end{equation*}
$$

Equivalently, if we use the reduced radial wavefunction (22), equation (26) takes the form
$S_{ \pm} \psi_{n m}=-\frac{\mathrm{i} \hbar}{2 \beta^{2}}(m \pm 1) \mathrm{e}^{\mathrm{i}(m \pm 2) \phi} \frac{1}{\rho}\left(\frac{1}{\rho} \frac{\mathrm{~d}}{\mathrm{~d} \rho}-\frac{1 \pm m}{\rho^{2}} \pm \frac{\gamma}{2(m \pm 1)} \beta^{2}\right) f_{n m}(\rho)$.
Performing the change of variable $\tilde{x}=\beta^{2} \rho^{2}$, this equation can be rewritten as
$S_{ \pm} \psi_{n m}= \pm \mathrm{i} \hbar \beta(m \pm 1) \mathrm{e}^{\mathrm{i}(m \pm 2) \phi} \frac{1}{\sqrt{\tilde{x}}}\left(\mp \frac{\mathrm{~d}}{\mathrm{~d} \tilde{x}}+\frac{m \pm 1}{2 \tilde{x}}-\frac{\gamma}{4(m \pm 1)} \beta^{2}\right) f_{n m}(\tilde{x})$.
Because of equation (12) the effect of the radial operators in equations (29) acting on the reduced radial wavefunction is such that

$$
\begin{align*}
& o_{m+2}^{-} f_{n m}(\tilde{x}) \equiv\left(-\frac{\mathrm{d}}{\mathrm{~d} \tilde{x}}+t(\tilde{x}, m+1)\right) f_{n m}(\tilde{x}) \propto f_{n m+2}(\tilde{x}) \tag{30}\\
& o_{m}^{+} f_{n m}(\tilde{x}) \equiv\left(\frac{\mathrm{d}}{\mathrm{~d} \tilde{x}}+t(\tilde{x}, m-1)\right) f_{n m}(\tilde{x}) \propto f_{n m-2}(\tilde{x}) \tag{31}
\end{align*}
$$

with

$$
\begin{equation*}
t(\tilde{x}, m)=\frac{m}{2 \tilde{x}}-\frac{\gamma}{4 m} \beta^{2} \tag{32}
\end{equation*}
$$

Alternatively, from the IHFM we can deduce expressions for the o_{m+2}^{-}and o_{m}^{+}operators as follows. In terms of $f_{n m}(\tilde{x})$, equation (25) turns out to be

$$
\begin{equation*}
\left(-\frac{\mathrm{d}^{2}}{\mathrm{~d} \tilde{x}^{2}}+\frac{1}{4} \frac{(m-1)(m+1)}{\tilde{x}^{2}}-\frac{\gamma}{4 \tilde{x}}\right) f_{n m}(\tilde{x})=-\frac{1}{4} f_{n m}(\tilde{x}) \tag{33}
\end{equation*}
$$

which is an F-type factorizable equation in the sense of IH [1].
By means of the IHFM, equation (33) can be factorized into two equations completely equivalent to equations (30) and (31). Therefore, the operators o_{m+2}^{-}and o_{m}^{+}must satisfy

$$
\begin{align*}
& o_{m+2}^{-} f_{n m}(\tilde{x})=\sqrt{1 / 4+2 \eta_{m}} f_{n m+2}(\tilde{x}) \tag{34}\\
& o_{m}^{+} f_{n m}(\tilde{x})=\sqrt{1 / 4+2 \eta_{m-2}} f_{n m-2}(\tilde{x}) \tag{35}
\end{align*}
$$

where

$$
\begin{equation*}
2 \eta_{m}=\frac{\gamma^{2}}{16(m+1)^{2}} \tag{36}
\end{equation*}
$$

These operators connect the reduced radial eigenfunctions $f_{n m}$ and $f_{n m+2}$, i.e. o_{m+2}^{-} transforms $f_{n m}$ into $f_{n m+2}$ and o_{m+2}^{+}does the reverse. Thus, we conclude that the IH radial operators o_{m+2}^{-}and o_{m}^{+}are contained in the constants of motion $S_{ \pm}$.

3. The $S_{ \pm}$operators and supersymmetric approach to the problem

We note from the radial Schrödinger equation (25) or (33), that to each fixed value of m there corresponds a Hamiltonian H_{m}, with the property

$$
\begin{equation*}
H_{m}=H_{-m} \tag{37}
\end{equation*}
$$

This means that

$$
\begin{equation*}
f_{n m}=f_{n|m|} . \tag{38}
\end{equation*}
$$

As a consequence, in an $m n$-plane the levels with the same energy are symmetrically grouped around the n-axis. Consistently with this picture we observe that

$$
\begin{equation*}
o_{-m+2}^{-}=-o_{m}^{+} \tag{39}
\end{equation*}
$$

which is valid for $m \neq 1$, as was noted in section 2 . Then there is no operator o_{1}^{-} (oo o_{1}^{+}) transforming f_{n-1} into $f_{n 1}\left(f_{n 1}\right.$ into $\left.f_{n-1}\right)$. This is so because, in agreement with equation (37), the pair of Hamiltonians H_{1} and H_{-1} are identical.

The grouping of the angular momentum levels allows us to relate the operators S^{+}and S^{-} to the supercharges $Q_{m}^{ \pm}$in the supersymmetric approach to the problem.

By applying a_{g} to the state $\psi(\rho, \phi)$ the resulting radial operators are [12]

$$
\begin{align*}
& Q_{m}^{+} \equiv a_{g}(\rho, m)=\frac{\hbar}{\sqrt{2 \mu}}\left(\frac{\mathrm{~d}}{\mathrm{~d} \rho}+\frac{m+\frac{1}{2}}{\rho}-\beta^{2} \rho\right) \tag{40}\\
& Q_{m}^{-} \equiv a_{g}^{\dagger}(\rho, m+1)=\frac{\hbar}{\sqrt{2 \mu}}\left(\frac{\mathrm{~d}}{\mathrm{~d} \rho}+\frac{m+\frac{1}{2}}{\rho}-\beta^{2} \rho\right) \tag{41}
\end{align*}
$$

which lead us to the pair of isospectral Hamiltonians of the problem,

$$
\begin{align*}
& Q_{m}^{+} Q_{m}^{-}=-\frac{\hbar^{2}}{2 \mu} \frac{\mathrm{~d}^{2}}{\mathrm{~d} \rho^{2}}+V^{(0)}-m \hbar \omega \tag{42}\\
& Q_{m}^{-} Q_{m}^{+}=-\frac{\hbar^{2}}{2 \mu} \frac{\mathrm{~d}^{2}}{\mathrm{~d} \rho^{2}}+V^{(1)}-(m+1) \hbar \omega \tag{43}
\end{align*}
$$

where

$$
\begin{equation*}
V^{(0)}=V(\rho)+\frac{\hbar^{2}}{2 \mu} \frac{m(m+1)+\frac{3}{4}}{\rho^{2}} \tag{44}
\end{equation*}
$$

$$
\begin{equation*}
V^{(0)}=V(\rho)+\frac{\hbar^{2}}{2 \mu} \frac{m^{2}-\frac{1}{4}}{\rho^{2}} \tag{45}
\end{equation*}
$$

Thus, we have shown that the operators $S_{ \pm}$, given explicitly by equation (23), generate the radial ladder operators (30) and (31), as well as the pair of isospectral Hamiltonians (42) and (43) for the 2-DIHO.

4. Concluding remarks

We have shown that $S_{ \pm}$are ladder operators simply from their commutation relations with L_{z}. We have found explicitly how these operators are translated from the classical observables and their relation to the left and right circular annihilation operators. Moreover, we have found that the operators $S_{ \pm}$generate the IH radial factorization and the pair of isospectral Hamiltonians of the problem.

In [13] Lyman and Aravind have derived the Laplace-Runge-Lenz vector for the twodimensional hydrogen atom from the corresponding supersymmetric radial operators. Also, Torres and Tepper [14] have recently derived the constants of motion S_{x} and S_{y} of the 2-DIHO from the radial super charges. However, these authors use the inverse procedure to that followed by us.

As a final remark, the 3-DIHO group of symmetry is well known [15]. Also, the radial Schrödinger equation has been factorized and raising and lowering operators have been derived [16]. The connection of supersymmetry to the constants of motion is the subject of a forthcoming report.

Acknowledgments

This work was partially supported by SNI and CoFAA-IPN.

References

[1] Infeld L and Hull T E 1951 Rev. Mod. Phys. 2321
[2] Coish H R 1956 Can. J. Phys. 34343
[3] Biedenharn L C and Louck J D 1981 Angular Momentum in Quantum Physics, Encyclopedia of Mathematics and its Applications (Reading, MA: Addison-Wesley) p 353
[4] Mota R D, García J and Granados V D 2001 J. Phys. A: Math. Gen. 34 1-9
[5] Grosse H 1991 Recent Developments in Quantum Mechanics ed A Boutet de Monvel et al (Dordrecht: Kluwer) pp 299-327
[6] Granados V 1991 Rev. Mex. Fís. 37 629-37
[7] Dahl J P and Jørgensen T 1995 Int. J. Quantum Chem. 53 161-81
[8] Goldstein H 1980 Classical Mechanics (Reading, MA: Addison-Wesley) p 423
[9] Jauch J M and Hill E L 1940 Phys. Rev. 57641
[10] Dulock V A and McIntosh H V 1965 Am. J. Phys. 33109
[11] Cohen-Tannoudji C, Diu B and Laoë F 1977 Quantum Mechanics (New York: Wiley) p 735
[12] Maier-Metz H 1998 Eur. J. Phys. 19 137-41
[13] Lyman J M and Aravind P K 1993 J. Phys. A: Math. Gen. 263307
[14] Torres del Castillo G F and Tepper Gorcía T 2002 to be published
[15] Fradkin D M 1967 Prog. Theor. Phys. 37798
Joshi A W 1973 Elements of Group Theory for Physicists (New Delhi: Halsted) p 169
Baker G A 1956 Phys. Rev. 103 1119-20 (for a discussion of the n-DIHO case)
[16] Liu Y F, Lei Y A and Zeng J Y 1997 Phys. Lett. A 37 9-22
Kostelecký V A, Nieto M M and Truax D R 1985 Phys. Rev. D 32 2627-33 (for a discussion of the n-DIHO case)

