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Abstract
For the quantum two-dimensional isotropic harmonic oscillator we show that
the Infeld–Hull radial operators, as well as those of the supersymmetric
approach for the radial equation, are contained in the constants of motion
of the problem.

PACS numbers: 03.65.−w, 02.30.Tb, 11.30.Pb

1. Introduction

For some quantum problems the relation between constants of motion, ladder operators and
supercharges has been studied by several authors. For example, in their seminal work Infeld and
Hull showed the connection between factorization operators and the orbital angular momentum
[1]. The Infeld–Hull (IH) factorization can be derived from the ladder operators related to the
angular momentum operators in the symmetric top, the electron–magnetic pole interaction and
Weyl’s spherical harmonics with spin [2]. Besides, the Laplace–Runge–Lenz vector (LRLV)
has been related to the Infeld–Hull factorization method (IHFM) [2–4] and to the pair of
isospectral Hamiltonians for the non-relativistic Kepler–Coulomb quantum problem [4–6].
Also, in [7] it is shown that the supersymmetry of the relativistic Kepler quantum problem is
generated by the Johnson–Lippmann operator.

We can ask ourselves for other quantum problems where there is any connection between
the constants of motion and their radial ladder operators. The purpose of this paper is to
answer this question by treating the two-dimensional isotropic harmonic oscillator (2-DIHO)
quantum problem. To do this we follow the approach developed in [4], the radial Schrödinger
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equation factorized a lá IH, and the relationship between degeneracy, constants of motion and
the SU(2) symmetry group for the 2-DIHO.

In section 2, we find, from the classical observables of the problem, the quantum operators
S±, which connect all the states with a given energy. We show how these quantum operators
are related with the left and right circular annihilation operators. We apply them to any
wavefunction of the function space spanned by the solutions of the Schrödinger equation.
This procedure allows us to obtain the radial ladder operators for the reduced wavefunction
fnm(ρ), acting on m, without reference to any factorization method. Next, by using the radial
Schrödinger equation we show that these operators are equal to those we obtain by using
the IHFM. So, we conclude that the IH radial operators of the problem are contained in the
quantum operators S±.

In section 3, by means of simple arguments, we show how the ladder operators obtained
in section 2 must generate the pair of isospectral Hamiltonians of the 2-DIHO. Finally, in
section 4, we give some concluding remarks.

2. The constants of motion S±, annihilation operators ad, ag and ladder operators for
fnm(ρ), acting on m

It is well known that the constants of motion of the classical 2-DIHO (in addition to the angular
momentum Lz) are given by the symmetric tensor of rank 2 [8]:

Aij = 1

2µ

(
PiPj + µ2ω2xixj

)
(1)

with µ(ω) the mass (frequency), P the linear momentum of the oscillator and i, j = x, y. The
quantum version of this tensor follows immediately, since it turns out to be self-adjoint. These
operators and the angular momentum Lz are used to define the new constants of motion:

Sx ≡ (Axy + Ayx)/2ω = (
PxPy + µ2ω2xy

)/
2µω (2)

Sy ≡ (Ayy − Axx)/2ω = (
P 2
y − P 2

x + µ2ω2(y2 − x2)
) /

4µω (3)

Sz ≡ Lz/2 = (xPy − yPx)/2. (4)

Except for some small changes, these are those given in [9]. Sx is known as the correlation and
is a peculiar feature of the 2-DIHO [10]. Sy is the energy difference of the one-dimensional
harmonic oscillators in the x- and y-coordinates. They obey the SU(2) or SO(3) group Lie
algebra:

[Si, Sj ] = ih̄εijkSk for i, j, k = x, y, z. (5)

These commutation relations leads to

[Lz, S±] = ±2h̄S± (6)

where S± = Sx ± iSy .
The Hamiltonian of the 2-DIHO is

H = 1

2µ

(
P 2
x + P 2

y + µ2ω2(x2 + y2)
)

(7)

or, in polar coordinates,

H = − h̄2

2µ

(
1

ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
+

1

ρ2

∂2

∂φ2

)
+ V (ρ) (8)
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where V (ρ) = µω2ρ2/2. Because of [Aij ,H ] = [Lz,H ] = 0, it is straightforward to show
that [H,Si ] = 0.

We know that the operators {H,Lz} are a complete set of commuting observables in the
state space ξxy associated with the variables x and y [11]. Then by applying equation (6) to
any eigensolution ψnm of the eigenvalue equations

Hψ(ρ, φ) = Eψ(ρ, φ) (9)

and

Lzψ(ρ, φ) = h̄mψ(ρ, φ) (10)

we obtain

LzS±ψnm = S±(Lz ± 2h̄)ψnm = h̄(m ± 2)S±ψnm. (11)

Since this expresses the fact that S±ψnm is also an eigenfunction of Lz with eigenvaluesm±2,
then

S±ψnm ∝ ψn m±2 (12)

i.e. S+ (S−) increases (decreases) two units in m, leaving the principal quantum number n fixed,
when it acts over the complete state ψnm(ρ, φ). Therefore, the degeneracy of the 2-DIHO can
be described by using the operators S±.

Equation (12) suggests a connection between the operators S± and the left and right
circular annihilation operators ad and ag defined as [11]

ad = 1√
2
(ax − iay) (13)

ag = 1√
2
(ax + iay) (14)

where

ax = 1√
2
(βx + iPx/βh̄) (15)

ay = 1√
2
(βy + iPy/βh̄) (16)

with β = √
µω/h̄. Since the action of the operators ad and ag on any 2-DIHO wavefunction

ψnm leads us to

adψnm =
√

1
2 (n + m)ψn−1m−1 a

†
dψnm =

√
1
2 (n + m) + 1ψn+1m+1 (17)

agψnm =
√

1
2 (n − m)ψn−1m+1 a†

gψnm =
√

1
2 (n − m)ψn+1m−1 (18)

where the dagger implies Hermitian conjugate, we deduce that

a
†
dagψnm = √

ng(nd + 1)ψnm+2
(19)

a†
gadψnm = √

nd(ng + 1)ψnm−2

with nd = (n + m)/2 and ng = (n − m)/2.
Thus, from equations (12) and (19) we can say that S+ (S−) is a multiple of a†

dag (a
†
gad).

In fact, we easily verify that

S+ = −ia†
dag

(20)
S− = +ia†

gad.
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On the other hand, for all two-dimensional central potentials V (ρ), ψnm can be written as

ψnm = eimφRnm(ρ). (21)

Now, we want to show how the IH radial ladder operators for the reduced wavefunction

fnm(ρ) ≡ ρRnm(ρ) (22)

acting on m, are contained in S±. By expressing the operators S± in polar coordinates we find

S± = −h̄2

4µω
e±2φ

(
∓i

(
∂2

∂ρ2
− 1

ρ

∂

∂ρ
− 1

ρ2

∂2

∂φ2
− µ2ω2

h̄2 ρ2

)
− 2

ρ2

∂

∂φ
+

2

ρ

∂2

∂ρ∂φ

)
. (23)

Applying them to any bound state of the form (21), we obtain

S±ψnm = ± ih̄2

4µω
ei(m±2)φ

(
d2

dρ2
− 1

ρ
(±2m + 1)

d

dρ
+
m2 ± 2m

ρ2
− µ2ω2

h̄2 ρ2

)
Rnm(ρ). (24)

The second-order derivative in this equation can be transformed into one of first order by using
the radial Schrödinger equation(

d2

dρ2
+

1

ρ

d

dρ
− m2

ρ2
− β4ρ2

)
Rnm(ρ) = −β2γRnm(ρ) (25)

with γ = 2E/h̄ω. Then we obtain

S±ψnm = − ih̄

2β2
(m ± 1) ei(m±2)φ

(
1

ρ

d

dρ
∓ m

ρ2
± γ

2(m ± 1)
β2

)
Rnm(ρ) (26)

which is of first order. An important fact that will be used in section 3 is that these equations
are not defined for m = ∓1. Then, because of equations (12) and equation (26), the explicit
first-order radial ladder operators, the step-up and step-down in m must be such that(

1

ρ

d

dρ
∓ m

ρ2
± γ

2(m ± 1)
β2

)
Rnm(ρ) = Rnm±2(ρ). (27)

Equivalently, if we use the reduced radial wavefunction (22), equation (26) takes the form

S±ψnm = − ih̄

2β2
(m ± 1) ei(m±2)φ 1

ρ

(
1

ρ

d

dρ
− 1 ± m

ρ2
± γ

2(m± 1)
β2

)
fnm(ρ). (28)

Performing the change of variable x̃ = β2ρ2, this equation can be rewritten as

S±ψnm = ±ih̄β(m ± 1) ei(m±2)φ 1√
x̃

(
∓ d

dx̃
+
m ± 1

2x̃
− γ

4(m± 1)
β2

)
fnm(x̃). (29)

Because of equation (12) the effect of the radial operators in equations (29) acting on the
reduced radial wavefunction is such that

o−
m+2fnm(x̃) ≡

(
− d

dx̃
+ t (x̃,m + 1)

)
fnm(x̃) ∝ fnm+2(x̃) (30)

o+
mfnm(x̃) ≡

(
d

dx̃
+ t (x̃,m − 1)

)
fnm(x̃) ∝ fnm−2(x̃) (31)

with

t (x̃,m) = m

2x̃
− γ

4m
β2. (32)

Alternatively, from the IHFM we can deduce expressions for the o−
m+2 and o+

m operators
as follows. In terms of fnm(x̃), equation (25) turns out to be(

− d2

dx̃2
+

1

4

(m − 1)(m + 1)

x̃2
− γ

4x̃

)
fnm(x̃) = −1

4
fnm(x̃) (33)
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which is an F-type factorizable equation in the sense of IH [1].
By means of the IHFM, equation (33) can be factorized into two equations completely

equivalent to equations (30) and (31). Therefore, the operators o−
m+2 and o+

m must satisfy

o−
m+2fnm(x̃) =

√
1/4 + 2ηmfnm+2(x̃) (34)

o+
mfnm(x̃) =

√
1/4 + 2ηm−2fnm−2(x̃) (35)

where

2ηm = γ 2

16(m + 1)2
. (36)

These operators connect the reduced radial eigenfunctions fnm and fnm+2, i.e. o−
m+2

transforms fnm into fnm+2 and o+
m+2 does the reverse. Thus, we conclude that the IH radial

operators o−
m+2 and o+

m are contained in the constants of motion S±.

3. The S± operators and supersymmetric approach to the problem

We note from the radial Schrödinger equation (25) or (33), that to each fixed value of m there
corresponds a Hamiltonian Hm, with the property

Hm = H−m. (37)

This means that

fnm = fn|m|. (38)

As a consequence, in an mn-plane the levels with the same energy are symmetrically grouped
around the n-axis. Consistently with this picture we observe that

o−
−m+2 = −o+

m (39)

which is valid for m �= 1, as was noted in section 2. Then there is no operator o−
1

(o+
1) transforming fn−1 into fn 1 (fn 1 into fn−1). This is so because, in agreement with

equation (37), the pair of Hamiltonians H1 and H−1 are identical.
The grouping of the angular momentum levels allows us to relate the operators S+ and S−

to the supercharges Q±
m in the supersymmetric approach to the problem.

By applying ag to the state ψ(ρ, φ) the resulting radial operators are [12]

Q+
m ≡ ag(ρ,m) = h̄√

2µ

(
d

dρ
+
m + 1

2

ρ
− β2ρ

)
(40)

Q−
m ≡ a†

g(ρ,m + 1) = h̄√
2µ

(
d

dρ
+
m + 1

2

ρ
− β2ρ

)
(41)

which lead us to the pair of isospectral Hamiltonians of the problem,

Q+
mQ

−
m = − h̄2

2µ

d2

dρ2
+ V (0) − mh̄ω (42)

Q−
mQ

+
m = − h̄2

2µ

d2

dρ2
+ V (1) − (m + 1)h̄ω (43)

where

V (0) = V (ρ) +
h̄2

2µ

m(m + 1) + 3
4

ρ2
(44)
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V (0) = V (ρ) +
h̄2

2µ

m2 − 1
4

ρ2
(45)

Thus, we have shown that the operators S±, given explicitly by equation (23), generate
the radial ladder operators (30) and (31), as well as the pair of isospectral Hamiltonians (42)
and (43) for the 2-DIHO.

4. Concluding remarks

We have shown that S± are ladder operators simply from their commutation relations with Lz.
We have found explicitly how these operators are translated from the classical observables and
their relation to the left and right circular annihilation operators. Moreover, we have found that
the operators S± generate the IH radial factorization and the pair of isospectral Hamiltonians
of the problem.

In [13] Lyman and Aravind have derived the Laplace–Runge–Lenz vector for the two-
dimensional hydrogen atom from the corresponding supersymmetric radial operators. Also,
Torres and Tepper [14] have recently derived the constants of motion Sx and Sy of the 2-DIHO
from the radial super charges. However, these authors use the inverse procedure to that
followed by us.

As a final remark, the 3-DIHO group of symmetry is well known [15]. Also, the
radial Schrödinger equation has been factorized and raising and lowering operators have been
derived [16]. The connection of supersymmetry to the constants of motion is the subject of a
forthcoming report.
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